

Inclusivity of Computing Education for
Learners with Visual Impairments

Abstract

In this paper, we consider some of the barriers to

computing education for learners with visual

impairments (VI) and identify the inaccessibility of

most existing block-based programming languages

(BBLs) as a particular obstacle to the learning process.

We suggest that physical programming languages

(PPLs) could potentially be employed to overcome this

obstacle. To this end, we present Torino, a physical

programming language designed specifically to support

collaborative learning experiences for children with

mixed visual-abilities. Following a user-centric, iterative

design process and initial pilot evaluation, over 30 sets

of the technology are currently being trialed across the

UK. In this paper, we discuss some of the challenges

that we face in the development and evaluation of

assistive technology for education, drawing on

examples encountered during the development and

evaluation of Torino.

Author Keywords

Visual impairments, computing education, accessibility,

inclusive design; real-world technology deployment.

ACM Classification Keywords

K.4.2 [Social Issues]: Assistive technologies for persons

with disabilities.

Alex Hadwen-Bennett

King’s College London

London, UK

alex.hadwen-bennett@kcl.ac.uk

Anja Thieme

Microsoft Research

Cambridge, UK

anthie@microsoft.com

Introduction

Technology has become ubiquitous, requiring a society

that is proficient in its use of technology. It is estimated

that over half of the workforce today require a high

level of digital skills, which include amongst others

financial modelling, content creation and social media

analysis [8]. Currently, 50% of top paying jobs in the

US require at least some coding skills [2]. In addition to

coding, computational thinking skills are identified as

one of the 10 skills that will be needed by workers in

2020 [3]. Despite the growing importance and potential

value of technology, there is still a divide between

those that have access to, and the skills to use it, and

those that do not; and this gap especially pronounced

for disabled populations (cf. [7]).

The recent introduction of computing into the national

curriculum for England in 2014 [4], brought with it the

requirement for children to be taught basic computing

knowledge and skills from as early as the age of five.

This is a great step forward, however there are many

barriers to computing education for learners with visual

impairments (VI). Next, we describe existing barriers to

their learning of computing skills and discuss challenges

that HCI researchers often face in addressing those.

Accessibility of Computing Education

Many modern programming environments are

inaccessible to VI learners, as they are often impossible

to interface with using a screen reader [1]. Currently

the most popular languages for introductory

programming in primary schools in the UK are block-

based [5]. Block-based languages (BBLs) such as

Scratch (see Figure 2) enable learners to develop

programs by snapping virtual blocks together that are

illustrated on a digital screen, removing the need for

them to learn the complex syntax of a text-based

language. However, BBLs are intrinsically visual,

utilizing drag-and-drop interactions or graphical

animations, that are inaccessible to most VI learners.

Physical programming languages (PPL) present a viable

alternative to BBLs. Here, commands are represented

by physical objects which can be joined together to

create programs. One recent example of an accessible

PPL is Torino (see Figure 1), which we will describe in

more detail below.

Torino

Torino is a physical programing language for teaching

basic programing constructs and computational

thinking to children aged 7-11, inclusive of children

with VI. For the design of Torino, we partnered with

two blind and two partially-sighted children to generate

new ideas for, and prototypes of, technology over a

period of 18 months. Next, we explicate some of the

key decisions made in the design of Torino to support

accessibility and collaborative learning experiences.

Design Rationale

To create programs with Torino, physical ‘command

pods’ are connected to each other, which produce

sound in the form of music, stories and poems [6].

Torino features four main types of command pods:

play, pause, loop and selection, each of which

represents a line of code in the program (see Figure 3).

Adding a play pod instructs the program to play a

sound that can be altered using a dial that rotates

through a number of available sounds. The pause pod

adds a delay between two commands in the program.

Both pods also have dials to increase or decrease the

duration of play or pause. The loop pod allows for those

command pods that are added, to repeat, and can be

Figure 1. Torino in use.

Figure 2. Example Scratch

Program

set to be ‘infinite’ or to cycle through a specific number

of ‘iterations’. To facilitate their identification, each pod

type is further distinct in size and shape, and their

physical controls (dials) emphasized using high

contrasting colors. Additionally, there is a selection pod

that enables the program to take one of two paths,

based on the result of a condition that is set via dials.

To create programs, command pods are connected to a

hub, which features buttons to play and stop the

program, along with in-built speakers so the output of

the program can be heard. Each pod contains a custom

circuit board, containing a microcontroller and

connectors that provide power and communication to

connected pods, allowing them to form a network. With

the electronics and controls locally embedded in each

pod, real-time audio feedback is played via a speaker in

the hub in response to direct manipulations. Further,

because it is necessary to connect pods to the hub, the

hub acts as a starting point – a physical reference to

the origin of the program; whilst the directionality of

the program flow can be inferred by following the

networked pods. Furthermore, each time a pod is

added or removed from the network this is acoustically

represented by a distinct ‘connect’ or ‘disconnect’ sound

to support awareness and keeping track of both one’s

own and other people’s interactions with the system.

Torino Evaluation

In an initial pilot study, two researchers (one of whom

has a background in teaching), facilitated engagements

with Torino for five pairs of children with mixed-visual

abilities. The study showed how the specific multi-

modal configuration of the technology, the programing

tasks (e.g. the joint creation of a seven note piano

scale) and the social interactions of using the tool with

a peer, supported the children’s sense-making of Torino

and their learning of computing skills. Building on these

initial findings, we iterated the technology and deployed

over 30 Torino sets, which are currently being used in a

larger-scale trial across the UK.

A curriculum was developed for use in the trial, that

aligns with the English National Curriculum, thus

enabling teachers to address programming related

learning objectives using Torino. The curriculum was

written by an experienced computing teacher and

reviewed by an expert in primary computing education,

whose feedback fed into a second iteration of the

curriculum. The content covered in the curriculum

includes: sequence, selection, loops, debugging,

decomposition and variables.

Over 25 parents and teachers are participating in the

trial, most of whom are not computing specialists. This

poses unique challenges as to how to best support

them in using the tool in-the-wild. To this end, we

provided them with extensive training materials, a

comprehensive teachers’ guide that includes solutions

to all the activities in the curriculum as well as example

questions to ask to the children; and also video

tutorials to help them get started with Torino.

Through this trial we aim to evaluate the effectiveness

of different aspects of Torino. One particular challenge

here is the development of valid research instruments

which are suitable for VI children. These include the

effectiveness of the technology, the curriculum, and

users’ experiences of learning with Torino. The research

instruments we will be employing include pre-post

questionnaires and reflective teacher diaries. Part of the

questionnaires are designed to assess how the children

 PLAY

 PAUSE

 LOOP

 SELECTION

Figure 3. Torino pod types.

perceived the technology how its use impacted their

coding ability and understanding of computer science

more generally. To this end, we asked the children

before they got started to describe to us a computer

scientist and to rate their coding ability using a 5 star

rating scale. Further, we are gathering reflections from

the adult participants that are administering additional

research instruments for the current study.

Additional research challenges and questions of interest

include for example: To what extent is Torino inclusive

of all learners? How feasible is its use for educating VI

learners in mainstream schools? How can the transition

from Torino to text-based languages be facilitated?

Conclusion

The development and on-going evaluation of Torino has

highlighted challenges in the creation of assistive

technologies for education, specifically for people with

VI. In this workshop, we seek to discuss these

challenges with other researchers and practitioners in

this space, to share experiences from our journey with

Torino, reflect on lessons learned, and to jointly work

towards developing the agenda for future work.

Acknowledgements

Special thanks the Project Torino research team; and

all teachers, parents and students supporting this work.

References

1. Catherine M. Baker, Lauren R. Milne, and Richard E.

Ladner. 2015. StructJumper: A tool to help blind

programmers navigate and understand the structure of

code. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems -

CHI ’15, 3043–3052.

https://doi.org/10.1145/2702123.2702589

2. Burning Glass Technologies. 2016. Beyond Point and

Click the Expanding Demand for Coding Skills. Boston,

MA.

3. Anna Davies, Devin Fidler, and Marina Gorbis. 2011.

Future work skills 2020. Palo Alto, CA.

4. Department for Education. 2014. The national

curriculum in England - Framework document. Retrieved

November 20, 2017 from

https://www.gov.uk/government/uploads/system/uploa

ds/attachment_data/file/381344/Master_final_national_

curriculum_28_Nov.pdf

5. The Royal Society. 2017. After the reboot: computing

education in UK schools. Retrieved November 20, 2017

from

https://royalsociety.org/~/media/policy/projects/compu

ting-education/computing-education-report.pdf

6. Anja Thieme, Cecily Morrison, Nicolas Villar, Martin

Grayson, and Siân Lindley. 2017. Enabling Collaboration

in Learning Computer Programing Inclusive of Children

with Vision Impairments. In Proceedings of the 2017

Conference on Designing Interactive Systems - DIS ’17,

739–752. https://doi.org/10.1145/3064663.3064689

7. UK Digital Skills Taskforce. 2014. Digital Skills for

Tomorrow’s World. Retrieved May 12, 2017 from

http://www.ukdigitalskills.com/wp-

content/uploads/2014/07/Binder-9-reduced.pdf

8. UK forum for Computing Education. 2015. Digital Skills

Taskforce call for evidence: Submission from the UK

forum for Computing Education. Retrieved from

http://data.parliament.uk/writtenevidence/committeeevi

dence.svc/evidencedocument/digital-skills-

committee/digital-skills/written/12323.pdf

Figure 4. Example program:

Shows a LOOP that repeats to

PLAY pod instructions, followed

by a PAUSE and then a

SELECTION that either executes

a PAUSE or a PLAY pod.

https://www.microsoft.com/en-us/research/project/project-torino/

